
Look-Ahead Routing Reduces Wrong Turns 
in Freenet-Style Peer-to-Peer Systems 

 
Jens Mache, Eric Anholt, Valentina Grigoreanu, Tim Likarish, Biljana Risteska 

Lewis & Clark College 
Portland, OR 97219, USA 

{jmache, eta, vig, likarish,  risteska}@lclark.edu 
 

Abstract 
 
Peer-to-Peer protocols and applications have 
drawn much attention.  Freenet is a ground-
breaking Peer-to-Peer system that protects the 
anonymity of information producers, consumers, 
and holders. However, it has been reported that 
Freenet has a “poor worst-case performance, 
because a few bad routing choices can throw a 
request completely off track” [9]. In this paper, we 
design and test look-ahead routing that reduces 
wrong turns and thus reduces the pathlength of 
data transfers. Each node checks with all of its 
immediate neighbors before continuing with the 
depth-first search.  Results show a change in 
network traffic and a reduction in pathlength of up 
to 91% for 1-lookahead. 
 
Keywords: peer-to-peer algorithm, Freenet, 
routing, performance evaluation 
 
 
1. Introduction 
 

The Internet continues to experience rapid 
growth and an ever-increasing number of requests 
for the same pieces of information and media.  In a 
Peer-to-Peer (P2P) system, as information and 
media become more popular, they also become 
widely distributed and easier to access. In recent 
years, with the rise and fall of Napster [15] and 
replacements such as Gnutella [7] and Kazaa, P2P 
networking has drawn much attention.  P2P 
networks attempt to allow efficient retrieval of 
data by having clients request data from each 
other, rather than connect to centralized servers.  

In this paper, we focus on routing in Freenet-
style Peer-to-Peer systems. The paper is organized 
as follows: In Section 2, we provide background 
information and survey related work. In Section 3, 
we analyze a case of poor performance due to 
wrong turns. In Section 4, we discuss algorithms 
that address wrong turns, and we present N-
lookahead routing. Our simulation experiments 

and results are described in Section 5. After a 
discussion in Section 6, we conclude in Section 7. 

 
2. Background and Related Work 
 
2.1. Freenet-Style Peer-to-Peer Systems 

 
Freenet [4, 5] is a groundbreaking Peer-to-Peer 

system that protects anonymity: no node in the 
network should be able to find either the inserter 
of new data or the original requester of a piece of 
data.  Data files in the network are referenced by 
keys created by a hash function. Each node 
maintains a datastore that contains a cache of the 
most recently used files it has handled in the 
process of servicing requests and inserts.  Each 
node also maintains a reference table (also called 
routing table) of keys it knows and nodes that 
might be able to handle a request for each of those 
keys. 

“To increase network robustness and eliminate 
single points of failure, Freenet employs a 
completely decentralized architecture” [4].  Since 
Freenet does not use central servers to handle 
requests, each new node just needs to get initial 
references from other nodes.  While the reference 
could be passed from one person to another out of 
band, it is typically done using lists of seed nodes 
that are either published on the web or sometimes 
fetched from Freenet using an existing node. 

Freenet's routing algorithm is fairly simple.  A 
Freenet request consists of a desired key and a 
hops-to-live (HTL) value, which is the maximum 
number of nodes to be contacted in the search for 
that key before the request expires.  When a node 
receives a request, it first checks its local datastore 
for the entry.  If the data exists in the datastore, the 
node returns the data and a reference to itself to 
the previous node, which would add the reference 
to   its routing table and pass the data on, up the 
chain.  If the data does not exist, it finds the 
closest key in its routing table to the requested 
key, and passes the request on to that node with a 
decremented HTL.  The next node performs the 
same steps.  If a node does not have the requested 



data and cannot find a new node to route to, it 
returns failure to the previous node.  The requester 
would then ask its next best choice with the HTL 
decremented.  If a node detects that it is already 
part of a search, it returns failure, so that the 
network does not form loops.  This process 
continues until we run out of HTL.  At that point, 
a DataNotFound message will be returned up the 
chain.  This can happen for one of two reasons: 
either the data was not found by taking the 
particular path that the query took, or the data 
simply does not exist in the network. 

For the sake of anonymity, the algorithm above 
is not followed exactly.  When a node is passing 
data up the chain, it may replace the reference to 
the supplier of the data with a reference to itself.  
This keeps nodes higher up the chain from 
knowing if the reference is to the node that 
originally contained the data or if it is to a node 
somewhere along the chain.  Also, when a request 
with a HTL of 1 (a request only to the local node) 
is received, the node may randomly choose to 
forward it on.  This, combined with the encryption 
of connections between all nodes, prevents an 
individual from probing its neighbors for 
incriminating data.  This also guards from being 
able to prove which node actually had what data 
before the query happened.  However, it also 
makes efficient routing difficult. 

Because nodes have limited datastore capacity 
and replace files on a Least-Recently-Used (LRU) 
basis, when a node gets routed to for similarly-
numbered keys and successfully supplies them, it 
will tend to keep those in cache and thus specialize 
on specific key values.  This has been seen in the 
actual Freenet implementation [9]. 

 

Figure 1: Sample reference table of a node “A”. 

 

Figure 1 shows a small example. Each node has 
a reference table and a datastore. Let us assume 
that a request is forwarded to node A for document 
400.  Node A checks its datastore, which does not 
contain the requested document.  So it checks its 
reference table to see which of the keys is closest 
to 400.  In our case, 395 is the closest key, so the 
query is then forwarded to node C.  The reasoning 
behind this is that if all nodes follow this policy, 
nodes will end up getting specialized in certain 
keyspaces, as they get routed to for similar keys 
repeatedly and dissimilar keys tend to expire.  If 
this is the case, it is beneficial for nodes to request 
from nodes with similar keys to what they are 
looking for; that node is more likely to have the 
requested key or be able to route to a node with 
the requested key, than a node with a reference for 
a more differing key value.  The query continues 
in the same way until document 400 is found.  

Essential features for the good performance of 
Freenet are the properties of a small-world 
network: specialization and building shortcuts [9].  
A small-world network is a social phenomenon in 
which most people are linked by short chains of 
acquaintances.  In the case of Freenet, each node 
will tend to specialize in a dynamic range of 
keyspace.  It also builds bridges, or shortcuts, 
between itself and other nodes in the process of 
handling requests, using the node reference 
returned in successful queries.  

The Freenet algorithm is surprisingly effective 
in using little bandwidth for searching, due to its 
serial nature.  However, in order to retain Freenet's 
anonymity, data must be returned to the requester 
by passing the data back through the hop-by-hop 
chain instead of passing the data directly back to 
the requester. If the hop count (pathlength) is high, 
data retrieval can be quite slow. The longer the 
path, the higher the probability of slow or 
unreliable links on the path. 

 
2.2. Related Work 
 

Freenet is very different from Napster and 
Gnutella.  Napster’s central broker was a single 
point of failure and could easily be attacked or 
shut down.  Whereas Freenet operates depth-first, 
Gnutella operates breadth-first.  For a Gnutella 
request, all neighboring nodes are contacted, 
which may in turn contact all their neighboring 
nodes.  This can cause thousands of messages per 
request, making scalability a concern. 

Similar to Freenet, Chord [20], CAN [16], 
Pastry [18] and Tapestry/Oceanstore [24, 10, 17] 
operate depth-first.  However, these systems can 
be viewed as providing a distributed hashtable, 



where nodes have fixed identities and data is 
placed deterministically.  As a consequence, items 
can be located within a bounded number of routing 
hops.  On the other hand, securing against attack, 
load balancing and exploiting proximity can be 
difficult. 

Whereas modifications to the Gnutella and 
Pastry algorithms are described in [11] and [3], 
related work on modified algorithms for Freenet-
style systems seems to be rare.  Tests have been 
performed on modified datastore replacement 
schemes in one paper, but the request algorithm 
remained unchanged [23].  In our previous work, 
we designed and tested algorithms that help train 
Freenet-style systems by modifying the overlay 
network after failed request queries [13, 14] and 
after successful request queries [12].  However, 
we had not proposed a modified routing algorithm, 
until now. 

Freenetproject.org released in July 2003 a 
specification for their Next Generation Routing 
Protocol which “is designed to make Freenet 
nodes much smarter about deciding where to route 
information” [6].  To improve routing, they place 
preference on faster nodes when routing queries 
occur.  Three of the additional types of data that 
are collected about each node include: response 
times for requesting particular keys, the proportion 
of requests which succeeded, and the time required 
to establish a connection with that node.  All of 
these factors are taken into account to give a “data 
reply estimation” time.  Next Generation Routing 
thus decreases the chance of routing a query 
through a slow node and improves the adaptability 
of the network topology.  However, no claim is 
made that this approach reduces the number of 
hops required to fulfill a query. 

 
3. Poor Performance due to Wrong 
Turns 

Figure 2: 1,000 node network trained for 5,000 
actions with a median pathlength of about 5. 

As reported by Hong [9], request pathlengths 
for random keys start out high in untrained 
network. For a 1,000-node network after 5,000 
actions (inserts and requests) the median 
pathlength is below 10.  This is an encouraging 
result. However, while the median is low, the 
average pathlength is around 35.4, see Figure 2.   
In this example, only 60.5% of requests are 
successful with an HTL of 10.  Hence, 4 out of 10 
queries are unfulfilled. 

To evaluate Freenet’s performance we ran a 
shortest-path algorithm (assuming global view) for 
the same network graph. In theory, the same 
requests could be fulfilled with an average 
pathlength of 2.17.  See section 5.2 for more 
details. 

From the tests, we observed that many requests 
get within 1 hop from the target key. However, the 
existing algorithm's heuristic causes the request to 
continue on for 200+ more hops than needed. 
Indeed, Hong writes that "Freenet has good 
average performance but poor worst-case 
performance, because a few bad routing choices 
can throw a request completely off track" [9]. 

Figure 3: Example of a wrong turn. 
The example in Figure 3 outlines a request 

taken from a simulation of the original Freenet 
algorithm.  Node 112 requests document 14270.  
Following the original Freenet algorithm described 
above, node 112 looks in its routing table for the 
closest document to 14270 and finds 14267 at 
node 173.  Thus, the request is forwarded to node 
173.   In this example, the simulator follows this 
algorithm and finally finds the requested document 
215 hops later. However, the pathlength could be 
2, because node 112 has a reference to node 91 
which has a copy of document 14270.  

The original routing algorithm did not forward 
the query to node 91, because the routing table of 
node 112 only had a reference to node 91 for 
document 3782. One important emergent property 
of Freenet is that nodes specialize in the retrieval 
of some documents to the exclusion of others. This 
effect has been observed in actual Freenet nodes 
deployed in the Freenet network [6]. Figure 4 
represents the keys stored by one node. The x-axis 



represents the keyspace (from 0 to 2^160). The 
dark strips indicate areas in which the node has 
detailed knowledge about where requests for those 
keys should be routed. In our example, whereas 
node 91 has a copy of document 14270, node 112 
knows only about node 91's knowledge about 
document 3782. 

 

Figure 4:  An actual Freenet node's stored keys.  
(Source [6]) 

 
 

4. Algorithms that Address Wrong 
Turns 
 
4.1. Backtracking in Freenet 
 

Figure 5: Sample graph of a network with 40 
nodes. 
 

The original Freenet algorithm tries the second 
choice if the first choice returns unsuccessfully 
and there is HTL remaining. This process is called 
backtracking. 

Consider Figure 5 as a sample network graph.   
It is simplified because Freenet-style networks are 
not trees, nodes may have varying numbers of 
references to other nodes, and the nodes at depth 3 
of this tree in Freenet would also have references, 
making backtracking unlikely. 

Let's assume that the heuristic of “follow the 
reference to the closest key to that being 
requested” is represented by following the leftmost 
node on the tree.  If we are looking for a document 
that only exists on node 7 and have an HTL of 10, 
the request will first go through the nodes in the 
order 1-2-5-14, and when 14 doesn't have the 
document it backs up to 5 which requests 15 and 
16.  When 5 has exhausted its references, it backs 
up to 2, which continues in the order 6-17-18-19. 
With 10 hops, backtracking has not reached node 
7, and it has not examined the middle and 
rightmost subtrees. 

 
 

4.2. Limited Discrepancy Search 

Figure 6: Sample graph of a network with 15 
nodes. 
 

Limited Discrepancy Search (LDS) [8] is an 
algorithm for backtracking when following the 
heuristic to its depth fails.  It assumes that when a 
request fails initially (following the heuristic to its 
depth) the solution would most likely be found by 
taking a small number of deviations from the 
heuristic. 

We will use the sample graph in Figure 6 fist to 
explain LDS, again with the closest-key heuristic 
being represented as the left branch.  While the 
algorithm could be extended for graphs with out-
degree > 2, the basic LDS algorithm assumes a 
binary tree. 

In the LDS algorithm the first attempt is with 0 
discrepancies from the heuristic, in the order 1-2-
4-8. When 8 returns failure, the request backs up 
to 1, which then begins a 1-discrepancy search.  
Discrepancies (right branches) are used up first, so 
the search would go to the right at node 1 and 
continue in the order 3-6-12, for a total of 7 hops.  
If the document is not there, LDS would backtrack 
up to 1, then taken the order left-right-left, and if 
that failed left-left-right. 
 
4.3. New N-Lookahead Routing 

 
In our new N-lookahead algorithm, each node 

first checks with all of its immediate neighbors 
that are at most N hops away. If the data is not 
found, the depth-first search is continued. Fig. 7 
shows an example of 1-lookahead. Compared to 
Gnutella, our “flooding” is of much smaller scale. 

For another example, refer back to Figure 5.  
Again, we are looking for a document at node 7 
with HTL=10 and the closest-reference heuristic is 
represented by taking the leftmost branch.  With a 
1-lookahead (N=1) algorithm, node 1 first checks 
its neighbors 2, 3, 4, and fails.  It then sends its 
HTL=9 request to node 2, which does a 1-
lookahead to  5, 6, and then finds the document at 
node 7.  The HTL used is counted as 2. 

If we were to do a 2-lookahead algorithm, node 
1 requests that node 2, 3 and 4 do a 1-lookahead 
search.  Node 2 requests from its neighbors 5, 6, 
and 7, and finds the data on node 7 with an HTL 
of 2. 



 
 

 
Figure 6: Example of original routing versus 1-
lookahead routing (request originates at node A, 
data was at node E, node B did not know that). 

Pseudocode for N-lookahead is as follows, 
modifications to the original algorithm are shown 
in bold: 
node::receive_request(key, htl, is_lookahead){ 
if (key is in datastore) 
  return SUCCESS; // File is transferred to req. 
htl = htl – 1; 
if (htl == 0) 
  return EXPIRED; 
ref = find_closest_reference(key) { 
if (is_lookahead || htl > N) { 
  if (is_lookahead) 
    status=ref->receive_request(key, htl, TRUE); 
  else 
    status=ref->receive_request(key, N, TRUE); 
  if (status == SUCCESS) 
    return SUCCESS; // File is transferred to req 
  ref = find_next_closest_reference(key, ref); 
} 
ref = find_closest_reference(key) 
while (ref != NULL) { 
  status = ref->receive_request(key, htl, FALSE); 
  if (status == SUCCESS) 
    return SUCCESS; // File is transferred to req 
  if (status == EXPIRED) 
    return EXPIRED; 
  ref = find_next_closest_reference(key, ref); 
}  
} 

 

5. Experiments 
 

In this section, we discuss the assumptions 
made by Aurora and our methodology for testing 
the new algorithm. 
 
5.1. Aurora Simulator 
 

In order to evaluate our algorithm’s 
performance, we used the Aurora simulator [1] for 
Freenet.  Aurora is a publicly available simulator 
of the Freenet network, which is written in C++.  
Serapis [19] is its Java counterpart, which 
implements more of Freenet's complexity.  
Though it is useful for modeling Freenet, Aurora 
makes certain assumptions: 
• A homogeneous network. 
• All nodes are online at all times.  
• Nodes all have an equally-sized datastore. 
• Nodes all have an equal maximum number of 

references in their routing tables.   
• Any node is equally likely to insert or request 

data as any other. 
• Any data file is equally likely to be requested 

or inserted. 
• Inserts and requests happen in approximately 

a 1 to 1 ratio.   
• All data files are equally sized.   

Aurora also doesn't account for bandwidth 
usage or differences in quality of network 
connections. 

 
5.2. Test Cases 
 

In order to test our algorithms, we first had to 
generate networks.  We used the “train” target for 
Aurora, which generates a network of a certain 
number of nodes arranged in a regular graph (each 
node is connected to 2 neighbors each to its left 
and right) and then performs a number of 
iterations of either requests or inserts using the 
original Freenet algorithm. While we performed 
tests on networks with both 1,000 and 10,000 
nodes, we will only present data on 1,000 nodes 
due to concerns we had with the scalability of the 
training process, which will be discussed in 
Section 6.  For our 1,000 nodes we trained 5 
networks each to 1,000, 5,000, and 50,000 
iterations.  We will call these “poorly trained,” 
“trained,” and “well-trained,” respectively.  Each 
node has a datastore with a capacity of 50 
documents, and a routing table with up to 200 
references. 



Because of the way in which the graphs are 
generated, we know that they are weighted and 
directed. We used a modified all-pairs shortest 
path algorithm to find the average optimal 
pathlength for a random request from a random 
node.  As expected, the average pathlength from a 
node to any other node decreased with training. 
Bridges and shortcuts get formed and nodes start 
filling up their reference tables, which facilitates 
getting across the graph faster.  After averaging 
the data for the 5 different examples, we found 
that the average pathlengths for 1,000, 5,000 and 
50,000 iterations were 4.79, 2.17, and 1.79, 
respectively.  Additional data collected about the 
networks shows that, by the time networks are 
"well-trained", the pathlength to any node from 
any other node is either 1 or 2. The networks 
might therefore have been over-trained by that 
point, considering the low total number of nodes 
in the network. For "trained" networks, the 
pathlengths are between 1 and 4. 
 
5.3. Methodology 

 
We used the Aurora simulator to test our new 

lookahead algorithm on the networks outlined in 
section 5.2. 

Tests were performed with N = 0 (no 
lookahead, or the original algorithm) and with N = 
1, N = 2, and N= 3 (1-, 2-, and 3-lookahead, 
respectively).  To reduce the effects of the 
randomness of training on the results, we ran tests 
on five of each type of network. 

The test performed a “probe” which involved 
requesting 10,000 random documents that exist in 
the network, from random nodes, with an HTL 
equal to the number of nodes in the system.  This 
ensures that the requests will succeed and report 
data on the hops taken.  These requests are 
performed in a “frozen” state, so that they don't 
train the routing tables further or change 
datastores. 

We also added a new metric to Aurora's output 
to be collected in the process of doing probes, 
which we call “bother count”.  This count 
measures the number of nodes contacted in the 
process of a request query.  It differs from hop 
count which is HTL at start minus HTL at fulfiller. 
Hop count equals pathlength from fulfiller to 
requester (unless there was backtracking). In 
contrast, bother count includes nodes contacted as 
a part of the lookahead algorithm and nodes 
contacted that were already in the search. Let us 
keep in mind that decreasing hop count is most 
important. The bandwidth needed for transferring 

a file may be hundreds or thousands of times 
larger than that for a request message. 

 
5.4 Results 
 

While the 1,000-iteration “poorly trained” 
networks had around 20 references in each node's 
routing table, and the 5,000-iteration “trained” 
networks had around 50 to 100, the 50,000-
iteration “well-trained” networks had reached the 
point where almost all nodes had full routing 
tables and were expiring old references in  an LRU 
manner. 

Table 1 shows the mean results for the 5 tests 
on each of our networks with 0- to 3-lookahead.  
“Average hops” is the average number of hops 
(new nodes contacted) it took for the request to 
succeed.  “Average bothered per request” is the 
average number of node contacts that occurred in a 
request.   

In the “poorly trained” networks, we see a 
small improvement with 1-lookahead over the 
original algorithm, and significantly higher bother 
counts.  As N increased, the hops taken improved 
continually, to a point of 87% reduction at N=3. 

 
 algorithm average  

hop count 
average  
bother count 

original 168.523 903.490
1-lookahead 123.457 2436.500
2-lookahead 61.957 3055.090

 
poorly 
trained 

3-lookahead 21.621 2956.660
original 27.785 137.030
1-lookahead 3.598 112.280
2-lookahead 2.882 111.530

 
trained 

3-lookahead 3.579 99.280
original 31.317 180.560
1-lookahead 2.815 233.280
2-lookahead 2.907 238.130

 
well 
trained 

3-lookahead 3.686 209.660

Table 1: Performance of different algorithms 
(average of 10,000 requests, 5 different networks 
in each training category). 

 
The “trained” and “well-trained” networks 

show an 87% and 91% improvement in hop count 
respectively when implementing a 1-lookahead 
search compared to the original protocol.  They 
also showed an 18% reduction and 29% increase 
in bother count per request.  The 5,000-iteration 
network showed an additional 20% improvement 
in hop count by moving to 2-lookahead, while the 
50,000-iteration “well-trained” network stayed 
approximately equal.  Both networks showed 
increases when moving to 3-lookahead.  



 

Figure 8: Distribution of hop count for different 
algorithms (1,000-iteration poorly- trained net). 

 

Figure 9: Distribution of hop count for different 
algorithms (5,000-iteration trained network). 
 

Figure 10: Distribution of hop count for different 
algorithms (50,000-iteration well-trained net). 

 
The most important network to look at may be 

the 5,000-iteration “trained” network.  At the point 
of 5,000 iterations the network is trained, but by 
50,000 iterations each node is likely to have 
references to a large proportion of the total nodes, 
which is unlikely to be the case in a real network.  
Figure 9 shows that our 1-lookahead algorithm 
improves dramatically on the original algorithm.  
In 20 hops or less, 1-lookahead fulfills 98.4% of 
the requests, whereas the original algorithm 
fulfilled only 69.6%.  To fulfill 90% of requests, it 
takes 7 hops, a huge difference from the 114 hops 
necessary with the original algorithm.  
 

The reduction in node-bothering in the 5,000-
iteration networks may come as a surprise.  
Intuition tells us that contacting every neighboring 
node in the lookahead search would increase the 
network traffic involved in searching, since the 
chance is small that a given neighbor would have 
the document.   However, the results do make 
sense.  As a request goes deeper in from its 
requester, a new node servicing the request is 
more likely to contact a node already involved in 
the search, because that node specialized in that 
keyspace.  By reducing the number of hops, we 
also bother fewer nodes that are already involved 
in the search. 

The increase in hops taken when changing from 
N=2 to N=3 in the 1,000-node 5,000-iteration test 
is also interesting.  Obviously at this point the 
lookahead algorithm is suboptimal.  Because the 
lookahead is depth-first instead of breadth-first, 
the 3-lookahead may be finding 3-hop routes to 
the data, that could have been fulfilled in 2- or 1-
lookahead if the search had continued to nodes 
that appeared to be worse choices.  However, a 
breadth-first search may not be useful to 
implement, because of the increase in network 
traffic. One alternative would be iterative 
deepening [22]. 
 
6. Discussion 
 

While the 2-lookahead algorithm was more 
efficient in the 1,000-node, 5,000-iteration case, 
there are reasons to go with a 1-lookahead search.  
For an N=2 (or higher) lookahead algorithm to be 
implemented, Freenet would need to change their 
protocol and create a new type of “lookahead” 
request. This request would need to tell the other 
node in the search to contact all of its neighbors, 
instead.  This differs from the current protocol 
where a node can only request that another node 



performs an HTL-based search.  The 1-lookahead 
algorithm, however, can be implemented using the 
current protocol because it only requires that a 
node sends a normal HTL=1 request to all of its 
neighbors, which will either return it from their 
datastores or fail (ignoring the anonymity features 
the contacted node may employ).  The new N-
lookahead protocol could also raise concerns that 
attackers could specify high-N requests to flood 
the network with traffic to a greater extent than 
they can with the standard HTL-based request. 

Several things remain to be done.  One of the 
most obvious is to conduct experiments to see if 
the effectiveness of the lookahead algorithm scales 
with network size and the size of routing tables. 

We ran experiments on fifteen 10,000-node 
networks.  In our 250,000 iteration tests, at 1 
lookahead we found a 41% reduction in average 
hops taken, in exchange for a 970% increase in the 
bother count.  Without lookahead, requests were 
taking on average 2367 hops, and even an 
improvement to 1376 is probably longer than any 
user would be willing to wait for a request if this 
were a real network. 

While the results (with or without the new 
algorithm) don't appear to scale well with network 
size, we feel there are other variables involved that 
may be specific to the Aurora simulator.  Because 
the training process begins with nodes in a regular 
graph, it is difficult to get started.  At the 
beginning of training, the 20-HTL requests used 
will mostly fail because they can't reach across the 
graph to where a document is.  The Aurora 
training simulator uses a 1:1 ratio of requests to 
inserts, which speeds up the process of training 
because the inserts will succeed and create many 
more node references in the network, which can be 
viewed as “shortcuts” between these nodes on the 
edges of the graph.  The problem is that, with our 
10,000-node network, many iterations are 
necessary to get the network trained so that 
connections are made between initially far-away 
nodes.  By 250,000 iterations, there have been on 
average 125,000 inserts. With a datastore of 50 
entries per node, each of those inserted documents 
would be in (10,000 * 50) / 125,000 = 4 nodes on 
average. 

However, we estimate that, in the real Freenet 
network, the average user's datastore is many 
times larger than the data they insert. Their ratio of 
requests to inserts would also be very high – most 
people only read data, without publishing.   
Freenet nodes also don't join the network 
spontaneously in a regular graph; the network is 
already established, and most nodes will contact 
some seed nodes which are distributed through the 

network.  Those seed nodes are also probably the 
most well-connected in the network, because of 
their increased popularity from new users 
connecting to them first.  While we tried 
producing 10,000 node networks at with a 99:1 
request:insert ratio and significantly expanded 
numbers of iterations, time constraints (due to the 
runtime of the simulation and probes) prevented us 
from completing those tests. 

One of the significant possible problems with 
the lookahead algorithm is that it may have 
detrimental effects on the training of routing for 
the network.  If successful requests pass through a 
sixth of the nodes they previously did, then a sixth 
of the routing information is being added to the 
network as a whole per request. 

Another problem is the weakening of 
specialization.  If a node is getting routed to for 
keys that are more randomly distributed, it won't 
tend to specialize as strongly in keyspace as it 
expires old data from its datastore. 

More research will need to be done into how 
significant of a problem this reduction in routing 
information is.  Some of our previous work on 
training improvements could be applied [12,13]. 

A possible way of counteracting the 
specialization problem mentioned above might be 
to use our lookahead algorithm more as the search 
nears the limit of its HTL (which, in a real 
network, would probably be near 20).  However, if 
we are concerned with decreasing the mean HTL, 
wrong turns early on are the most expensive and 
thus the most important to perform lookahead on. 

A possibility for limiting the bandwidth usage 
for requests might be to take more from the LDS 
idea.  LDS suggests that improvement can be 
made by assuming that a heuristic is more likely to 
fail a small number of times.  It may be that in our 
case a “wrong turn” that's avoided through 
lookahead is more likely to be in the first few 
routing choices a node has.  If so, the lookahead 
could be limited to the first M best nodes in the 
routing table to improve both hops taken and 
bother count.  More information would need to be 
gathered from our networks to see if this is true. 
 
 
7. Conclusions  
 

Wrong turns are detrimental to the performance 
of Freenet-style Peer-to-Peer systems. To reduce 
wrong turns, we designed look-ahead routing 
where a node first contacts its immediate 
neighbors before it continues the depth-first 
search. Our simulation results show that lookahead 



routing improves the pathlength of data transfers. 
Our main conclusions are as follows: 

 
• N-lookahead improves pathlength by 

preventing wrong turns when the data is 
within N hops of the node currently handling 
the request. 

• 1-lookahead seems most promising. Average 
pathlength is reduced by up to 91%. 
Lookahead of N>1 can show additional 
reduction in pathlength over N=1, but has 
diminishing returns or may even increase 
pathlength on well-trained networks. 

• Lookahead routing changes network traffic. 
Whereas the number of request messages sent 
can increase in poorly-trained networks, it is 
less significant or may even decrease in 
better-trained networks. 

 
Future work includes the implementation of 1-
lookahead routing in the reference Freenet node 
software. More experiments need to be conducted 
to see if the effectiveness of lookahead routing 
scales with network size and the size of routing 
tables. Lastly, because reduced pathlength results 
in fewer node references being added, it should be 
investigated how lookahead routing affects 
training.  Some of our previous work on training 
improvements could be applied [12,13]. 
 
Acknowledgements 
 
We would like to thank the John S. Rogers 
Science Research Program and the W.M. Keck 
Foundation for their support. 
 
References 

 
[1] Aurora simulator.   http://cvs.sourceforge.net 
/cgi-bin/viewcvs.cgi/freenet/aurora/. 
[2] Marcelo W. Barbosa, Melissa M. Costa, 
Jussara M. Almeida, V. A. F. Almeida, Using 
locality of reference to improve performance of 
peer-to-peer applications, In Proceedings of the 
4th Workshop on Software Performance (WOSP), 
2004. 
[3] Miguel Castro, Peter Druschel, Y. Charlie Hu, 
and Antony Rowstron. Exploiting network 
proximity in peer-to-peer overlay networks. In 
Proceedings of the International Workshop on 
Future Directions in Distributed Computing 
(FuDiCo), 2002. 
[4] Ian Clarke, Scott G. Miller, Theodore W. 
Hong, Oskar Sandberg, and Brandon Wiley. 
Protecting free expression online with Freenet. 

IEEE Internet Computing, pages 40–49, January-
February 2002. 
[5] Ian Clarke, Oskar Sandberg, Brandon Wiley, 
and Theodore Hong. Freenet: A distributed 
anonymous information storage and retrieval 
system. In H. Federrath, editor, Designing Privacy 
Enhancing Technologies, volume 2009 of Lecture 
Notes in Computer Science, pages 46–66. 
Springer-Verlag, 2001. 
[6] Free Network Project. Freenet’s next 
generation routing protocol. http://www. 
freenetproject.org / index.php?page=ngrouting. 
[7] Gnutella.  www.gnutella.com 
[8] William D. Harvey and Matthew L. Ginsberg. 
Limited discrepancy search. In Proceedings of the 
Fourteenth International Joint Conference on 
Artificial Intelligence, 1995. 
[9] Theodore Hong. Performance. In Andy Oram, 
editor, Peer-to-Peer – Harnessing the Power of 
Disruptive Technologies, chapter 14, pages 203–
241. O’Reilly, 2001. 
[10] John Kubiatowicz, David Bindel, Yan Chen, 
Steven Czerwinski, Patrick Eaton, Dennis Geels, 
Ramakrishna Gummadi, Sean Rhea, Hakim 
Weatherspoon, Wstley Weimer, Chris Wells, and 
Ben Zhao. Oceanstore: An architecture for global-
scale persistent storage. In Proceedings of the 9th 
International Conference on Architectural Support 
for Programming Languages and Operating 
Systems (ASPLOS), 2000. 
[11] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and 
Scott Shenker. Search and replication in 
unstructured peer-to-peer networks. In 
Proceedings of the 16th ACM International 
Conference on Supercomputing (ICS), 2002. 
[12] Jens Mache, David Ely, Melanie Gilbert, 
Jason Gimba, Thierry Lopez, and Matthew 
Wilkinson. Modifying the overlay network of 
Freenet-style peer-topeer systems after successful 
request queries. In Proceedings of the 37th Hawaii 
International Conference on System Sciences, 
2004. 
[13] Jens Mache, Melanie Gilbert, Jason 
Guchereau, Jeff Lesh, Felix Ramli, and Matthew 
Wilkinson. Request algorithms in Freenet-style 
peer-to-peer systems. In Proceedings of the 2nd 
IEEE International Conference on Peer-to-Peer 
Computing, 2002. 
[14] Jens Mache and Jeff Lesh. Simulated 
annealing and request algorithms in Freenet-style 
peer-to-peer systems. In Proceedings of the 2003 
International Conference on Internet Computing, 
2003. 
[15] Napster. http://www.napster.com. 
[16] Sylvia Ratnasamy, Paul Francis, Mark 
Handley, Richard Karp, and Scott Shenker. A 



scalable content addressable network. In 
Proceedings of ACM SIGCOMM, 2001. 
[17] Sean Rhea, Chris Wells, Patrick Eaton, 
Dennis Geels, Ben Zhao, Hakim Weatherspoon, 
and John Kubiatowicz. Maintenance-free global 
data storage. IEEE Internet Computing, pages 40–
49, September–October 2001. 
[18] Antony Rowstron and Peter Druschel. Pastry: 
Scalable, decentralized object location and routing 
for large-scale peer-to-peer systems. In 
Proceedings of the 18th International Conference 
on Distributed Systems Platforms (Middleware), 
2001. 
[19] Serapis. ttp://cvs.sourceforge.net/cgi-
bin/viewcvs.cgi/freenet/serapis. 
[20] Ion Stoica, Robert Morris, David Karger, M. 
Frans Kaashoek, and Hari Balakrishnan. Chord: A 
scalable peer-to-peer lookup service for Internet 

applications. In Proceedings of ACM SIGCOMM, 
2001. 
[21] Duncan J. Watts and Steven H. Strogatz. 
Collective dynamics of ‘small-world’ networks. 
Nature, 393:440–442, June 1998. 
[22] Beverly Yang and Hector Garcia-Molina. 
Improving Search in Peer-to-Peer Networks, In 
Proceedings of ICDCS, 2002 
[23] Hui Zhang, Ashish Goel, and Ramesh 
Govindan. Using the small-world model to 
improve Freenet performance. In Proceedings of 
IEEE Infocom, 2002. 
[24] Ben Y. Zhao, John Kubiatowicz, and 
Anthony D. Joseph. Tapestry: An infrastructure 
for fault-tolerant wide-area location and routing. 
Technical Report UCB/CSD-01-1141, University 
of California, Berkeley, 2001. 

 
 
 
 
 


