

Building X 2D rendering
acceleration with OpenGL

Eric Anholt
Intel Open Source Technology Center

How 2D has worked

● X has always implemented graphics
acceleration in a hardware specific driver

● Acceleration architectures (XAA, EXA, UXA,
SNA) provided helpers for translating X
primitives to GPU operations.

● Every new chipset, every year, you get to write
new 2D code

GL

● Used to be an optional thing on the side.
● You hoped it worked, sometimes you got lucky
● Used to be totally private memory management

What changed?

● GEM, KMS, and DMABUF gave us interfaces
for memory management across processes.

● Wayland development led to GBM for
interfacing between Linux's KMS and EGL/GL,
which is also used on Android and Mir.
– the “generic/graphics buffer manager”.

– totally ad-hoc API, no specification, but it works.

Do we need device-specific X 2D?

● Intel, AMD, and Nvidia have open source GL
drivers for all currently released chips.

● Rob Clark presented about progress on
embedded chips at XDC: basically, there's a
project for every GPU, and they're all building
GL acceleration first.

Introducing glamor

● Started development in 2008 using Xephyr as a
testbed.
– Got Xephyr (X on top of X) basically functional.

– Got stuck trying to figure out how to make DRI2 work.

● Picked up by Zhigang Gong in 2011
– moved to external tree

– DRI2 support added.

– large pixmap support

– Performance fixes.

Glamor uptake

● Only 2D acceleration supported on AMD as of
Southern Islands chipsets. (2012)

● ./configure option on Intel, driven by Intel UXA
code.

● Not yet enabled for nouveau.

Hard to hack on X

● Writing cross-API GL code is hard
● Testing X rendering code is hard

Cross-API GL is hard

● GL development occurs through extensions
– One or more vendors write a spec, implement it.
– Vendor specs get functions and enumerants under a

vendor-specific namespace.

● GLES removes functionality from desktop GL to
build its spec, vendor extensions re-add it.

● GL doesn't rely on dlsym(), and instead each
window system defines its own dlsym()-like API and
what subset of functions should be accessed by it.

libepoxy: hiding GL API badness

● Single GL ABI for all of OpenGL 1.2-4.4, GLES 1,
2-3, EGL, WGL, GLX.

● Built from Khronos's gl.xml, egl.xml, glx.xml
● Uses function pointers with dynamic resolution.
● Drop in to your application in place of:

– #include GL/gl.h
– -lGL

● https://github.com/anholt/libepoxy

Testing X rendering is hard

● Ask any X developer: “Just run XTS5”
● Actual testing: Span some terminals, drag

windows around in metacity, ship it.
● XTS5:

– Test suite from 1981

– Build system improved by Dan Nicholson, Peter
Hutterer, Peter Harris, and others.

– Still impossible to run.

Glamor problems

● GLES2 support.
– Have to use arbitrarily different functions to get the same job done.

● Wrote libepoxy to hide this GL function pointer management from glamor (and other apps).
● https://github.com/anholt/libepoxy (please use it in your GL applications!).

● Core GL support.
– Need to use GL vertex array objects.

● Performance opportunities missed.
– GL_ARB_vertex_attrib_binding.

– Fast-path shaders for not needing GLES2 workarounds.

– GL_ARB_texture_view for Render extension Picture formats.

– Integer textures for fb operations.

● Xorg DDX dependency.

https://github.com/anholt/libepoxy

Can we do better?

● Each X 2D driver has a copy of drmmode_display.c
● Each X 2D driver should have a copy of glamor initialization

– take fd from DRM, pass it to glamor's set-up-EGL-from-DRM-fd, done.

● Each X 2D driver should have a copy of DRI2/Present support.
– Get handle from pixmap, wrap it in an FB, tell the kernel to pageflip to the FB,

get events for vblanks and pageflip completes and pass them back.

● Each X 2D driver should have a copy of DRI3 support
– turn a DMABUF fd into an X pixmap, or get the DMABUF fd for an X pixmap.

– Take your current DRM fd, and make another one like it that's authenticated,
and pass it over the wire to the client.

● Each X 2D driver also has reams of XF86 initialization because it's a
super crufty API.

xf86-video-modesetting

● Generic 2D driver built on KMS.
– Initially written by Tungsten Graphics.

– Used as fallback driver for KMS-supported chipsets
without a native 2D driver.

– Opens DRM device nodes on the system until it finds
one matching the PCI ID it's supposed to probe

– Attaches to it, gets KMS output configuration
information, tells X about it.

– Same drmmode_display.c as everyone else.

Hacking up xf86-video-modesetting

● Pass the FD from opening the KMS driver to glamor_egl to set up 2D
acceleration.

● Make glamor_egl add support for DRI3 using that fd.
● Add DRI2 support so that AIGLX can initialize

– One of two pieces of device-specific code: A table of PCI IDs to tell the client
(AIGLX, Mesa) what filename to dlopen() to get a 3D driver for the device.

● What a ridiculous layering violation. DRI3 and EGL know how to load drivers on their
own. Let's fix that in Mesa's DRI2 and AIGLX.

● Add Present support so that DRI3 vblank synchronization works.
– Second piece of device specific code: there is a second type of CRTC

identifier on Intel for the kernel's pageflip API, and you need a device-
specific ioctl to get it from your CRTC.

Can GL perform like native?

● 3D games do fine.
● 2D pushes CPU overhead harder than 3D

games do.

glamor vs uxa (vs more) on Intel

● baseline is CPU, green is old UXA code, teal is
glamor.

Performance results

● glamor is faster than a limited couple-of-
months-per-chipset 2D acceleration.

● glamor is not as fast as a year-round 2D
acceleration tuning effort.

● glamor is still demo code, though.

glamor performance projects

● Use GL_ARB_buffer_storage to avoid buffer
mapping overhead.

● Use GL_ARB_vertex_array_object and
GL_ARB_vertex_attrib_binding to avoid vertex
attribute overhead.

● Fast-path shaders for skipping repeat workaroudns.
● Native trapezoid shaders using GLSL 1.30.
● Lots of fb codepaths to rewrite in GL.

core text rendering in glamor

● 36.5k glyphs/sec
– Make a temporary bitmap of each character, then read that bitmap back

out, compute RLE spans of pixels to draw, request GL to draw those
spans one at a time

● 193k glyphs/sec:
– Make a temporary bitmap of each character, read that bimap back out,

compute RLE spans of pixels to draw, request GL to draw all those
spans all at once.

● 290k glyphs/sec:
– Make a temporary bitmap of each character, read that bitmap back out,

request GL to draw each pixel present in the bitmap.

● Still can do better.

Other glamor projects

● Finish DRI2/DRI3 pageflipping
● Fix DRI3 API for PRIME support.
● Add overlay XV support.
● de-xf86 XV and EGL code.
● Finish GLES2 port.
● Automatic pageflipping no-tearing X

compositor.
●

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

