
High Performance X Servers in the Kdrive Architecture

Eric Anholt
LinuxFund

anholt@FreeBSD.org

Abstract

The common usage patterns of 2D drivers for the X Window System have changed over time. New extensions
such as Render and Composite are creating new demands for 2D rendering which do not match those for previous
architectures tailored to the core protocol. This paper describes changes made to the Kdrive X server
implementation to implement new 2D acceleration, improve management of offscreen memory, implement
OpenGL, and implement XVideo in a manner compatible with the Composite extension. With these changes,
Kdrive is far better suited as a desktop X server than before and may serve as an example for desktop X server
implementations. Simple benchmarks are presented.

1. Introduction

As desktop environments have advanced, the common
usage patterns of the X Window System [1] have
changed. In particular, the Render extension to the
protocol has allowed for new graphical operations
related to blending of images [2, 3, 4]. Software
implementations of these operations are too slow for
them to be used extensively in the user interface, and
modern graphics hardware can provide dramatic
performance improvements for many operations. The
new Composite extension is increasing the amount of
rendering to offscreen memory, and creates new
requirements for rendering of older operations. At the
same time, rendering operations provided by the core
protocol are being used less frequently. Improving
performance of these new operations will enable
significantly greater use and permit a new user
experience for the Linux desktop. This paper will
explore some of the changes made to the Kdrive-based
X server (also known as TinyX or Xkdrive), to
improve performance and create a server suitable for
the Linux desktop. This introduction will describe the
basic components of an X server, the features of
hardware typically found in desktop computers, and
describe someof the features and requirements of some
X extensions related to the work here. Section 2 will
describe another X server implementation, XFree86,
and how it compared to Kdrive. Section 3 will cover
the changes made to Kdrive as a result of research into
making Kdrive-based X servers useful for the desktop.
Section 4 will cover some of the tangible results of this
work, and Section 5 will describe some of the changes
remaining to be made to Kdrive to make it into a
capable desktop X server.

1.2. X Server Architecture

The X sample server developed for the MIT X
Consortium by Digital Equipment Corporation in 1987
provides a large base of shared code. Most X servers
available today, including the two mentioned in this
paper – XFree86 and Kdrive, take advantage of this.
This shared code includes parts for handling basic X
server initialization and teardown, for decoding the
network protocol, for breaking rendering requests into
simpler operations, for performing rendering
operations to memory. It also includes extension
implementations, among other things. Different X
servers using this shared code base are implemented in
the Device Dependent X (DDX) part of the server,
located under the hw directory in the source tree of
both XFree86 and Kdrive. The DDX is responsible for
actually dealing with input and output, whether that is
directly to hardware (in the case of XFree86 and
Kdrive) or to some software layer (as in the xnest or
the virtual framebuffer servers located in the XFree86
source tree).

1.3. Features of Commodity Hardware

Most video cards in desktop computers support the
following 2D acceleration functions:

� Filling rectangles with a solid color

� Copying one area of the screen to another

� Drawing lines using the Bresenham algorithm

� Performing color expansion of monochrome
bitmaps

Color expansion is the process of filling pixels of the
screen with foreground/background colors based on a
monochrome bitmap, which is used for non-antialiased
text rendering.

Typically, each of these operations can be done with a
Raster Operation (ROP) that allows various binary
operations to be done using the source or
foreground/background colors and the destination. A
planemask can also be set that allows writing to only
certain bits of each pixel.

Most cards also have the ability to take a video image
(which is stored in a YUV format that requires
conversion before it can be displayed on an RGB
display) and scale it onto the screen in places where the
color on the screen matches a color key.

The core X protocol supported these 2D capabilities
well, but with the advent of 3D hardware, new
possibilities are opened up for 2D rendering. By
rendering rectangles using 3D hardware designed for
OpenGL [5] or DirectX, we can perform blending of
source images into destination images, allowing for
fast rendering of effects like transparent windows,
shadows, and the operations necessary for antialiased
text. A card supporting 3D typically has one or two
texture units, but sometimes more. Each texture unit
can take input from a source image in card memory
(also referred to as offscreen memory or framebuffer)
or AGP memory (system memory accessible directly
by the card) when performing rendering. These
textures can be of varying color depths or even non-
RGB formats like YUV, can include alpha channels for
controlling blending, and can be scaled and mixed with
each other in various ways to produce a color value to
be written to the destination. With the final pixel
value, various blending functions can be used based on
its alpha value and the alpha value of the pixel
currently in the destination, which typically map to a
set of blending functions provided by OpenGL.

1.4. Render

The Render extension provides several new rendering
operations in X servers to handle the new demands of
desktop applications, designed to target the 3D
capabilities of newer hardware. It begins by creating a
new type, the Picture, which wraps around an X
drawable (a pixmap or a window). A Picture adds a
fourth color channel, alpha, which indicates the amount
of opacity. The Picture also adds the ability to apply
transformations to the coordinates of pixels requested

from the drawable and to make coordinates outside of
the drawable wrap around (“ repeat”). The new
rendering commands that can be performed on Pictures
include:

� blending of a constant color into a destination
rectangle

� blending of rectangles from images into the
destination

� blending of triangles from images into the
destination

� blending of trapezoids from images into the
destination

� blending of a series of glyphs into the destination

In the sample implementation of the Render extension
used by both XFree86 and Kdrive, all of those
graphical operations are implemented using the same
basic composite operation for blending of rectangles.
This call (“Composite”) takes the following arguments:

� a source picture and starting x/y coordinates

� an optional mask picture and starting x/y
coordinates

� a destination picture and starting x/y coordinates

� the width and height of the rectangle to be rendered
into the destination

� a composite operation

For each pixel in the destination rectangle, a source
pixel is chosen based on the offset within the
destination currently being rendered, after modification
by the transform and repeat requirements of the source
picture structure. If a mask is included, the source
pixel is multiplied by the alpha value of a pixel chosen
similarly from the mask picture (unless component
alpha is being used, to be discussed in the
"Complications for Render Acceleration" section).
This calculated source pixel value is then blended into
the destination pixel according to the composite
operation chosen, as described in Design and
Implementation of the X Rendering Extension by Keith
Packard [2].

1.5. Composite

The Composite extension (not to be confused with
Render's Composite operation) is an X server extension
that was first implemented in the Kdrive X server. It

allows an X client to control the compositing of a
window hierarchy into a parent window. It does this
by redirecting the rendering of that window hierarchy
(or, to simplify the discussion, a single window) into an
offscreen pixmap. This X client (a compositing
manager) can then use the Damage extension to be
notified when an area of the window changes, and
draw the appropriate area in the parent window as
necessary. Because the client controls the drawing
into the destination, it can add effects such as
translucency, shadows, or reshaping of windows.
Composite can also be used to simply get at the pixels
of a window that would otherwise be obscured. The
first publicly available compositing manager was
xcompmgr, which adds shadows to windows and
provides translucent menus. The use of xcompmgr
also eliminates the delay between a window being
exposed (for example after a window on top of it is
moved) and the redraw of the window underneath.
This provides a smoother user experience, with less of
the flicker associated with moving and resizing of
windows.

1.6. XVideo

The XVideo extension is used to perform conversion
and scaling of video formats such as YUV in the X
server. These conversions can be very expensive if
done in software, and they are the primary time
consumer in video playback.

1.7. OpenGL

OpenGL support is necessary for X servers due to its
widespread use in games and other applications on the
desktop. The GLX extension allows sending OpenGL
commands over the X protocol to be rendered by an X
server. Because the wrapping of OpenGL commands
into GLX requests creates significant overhead, it is
desirable to avoid that process. To avoid the overhead,
direct rendering is implemented to give the client direct
access to the video card. However, direct rendering
introduces security risks because many cards can issue
DMA requests to read or write system memory, and
thus access has to be limited. Direct rendering also
requires synchronization of access to the hardware as
well as kernel assistance in submitting DMA requests
and handling interrupts.

2. Related Work

XFree86 is the most popular open-source X server, and
is the de facto standard for comparison of other X
servers. This section describes significant differences
between XFree86 and Kdrive.

2.1. XAA Versus KAA

Part of the DDX is responsible for handling hardware
acceleration of drawing. In XFree86 and Kdrive this
piece is called the XFree86 Acceleration Architecture
(XAA) or Kdrive Acceleration Architecture (KAA)
[6]. The design decisions behind the two
implementations vary greatly.

XAA manages offscreen memory by treating it as a
large 2D area at a set number of bits per pixel (bpp).
Pixmaps (offscreen images) of any other bpp therefore
cannot be stored in offscreen memory. Acceleration
hooks are implemented as two or more callbacks to the
driver. One is a Setup hook which sets up the hardware
for the planemask and ROP, and performs other
preparation for rendering that operation. The
Subsequent hook can then be called one or more times
to actually perform rendering. This division is an
advantage because it avoids repeated Setup calls in the
case where clipping results in the operation needing to
be done in separate pieces. The video card is set up so
that the visible screen (offset 0) is the source and
destination offset, the screen's width is the pitch, and
offscreen areas are simply areas with "y" values
beyond the height of the screen. The Setup hook is not
allowed to fail, so many flags are available for drivers
to tell XAA about the hardware's features, such as
planemask and transparency support or limitations on
the direction of screen-to-screen copies. Also,
accelerators have limits on coordinates for 2D
acceleration, so often the memory for offscreen
pixmaps has to be limited so that offscreen areas with
"y" values beyond the limits are not used. XAA has
hooks for copying areas, filling rectangles and
trapezoids, drawing different types of lines, color
expansion of monochrome bitmaps, uploading images
from system memory to screen memory, and
Composite operations from memory (described in
Section 2.2).

In contrast, in KAA the offscreen memory is managed
as a linear area. This allows pixmaps of different bpp
to be stored offscreen, which is a requirement for fast
acceleration of Render operations, where using
pixmaps of different bpp from the screen is the norm.

Because the offscreen memory cannot be represented
as asingle 2D area, the pixmaps have to bepassed in to
the acceleration hooks, and the drivers then set up the
hardware's offset and pitch registers for the source and
destination each time. This has the added benefit that
there are not the same limitations on the total offscreen
memory due to the size of the hardware's 2D
coordinates. To avoid the complexity of flags for KAA
to determine whether an operation can be accelerated,
the Prepare hook (equivalent to Setup in XFree86) is
allowed to fail, which tells KAA to fall back to
software rendering. An additional Done hook is
included to allow for any cleanup necessary after a
rendering operation, but the Done hook is a stub in
most drivers. KAA implemented only two types of
acceleration before the work for this paper, which were
screen-to-screen copies and solid fills. It was decided
that the other types of acceleration supported in XAA,
such as lines, trapezoids and color expansion were used
rarely enough in modern desktops that they did not
justify the additional complexity to accelerate.

2.2. XAA Implementation of Render
Acceleration

XAA implements a small subset of Render operations.
It handles only cases where the destination picture is
located in offscreen memory and the source picture is
not. Because XAA's 2D offscreen memory layout
prevents the offscreen storage of pixmaps with a bpp
different from the screen, many source images will be
located in system memory anyway. This means that
typically the source picture has to be uploaded into a
scratch area each timebefore the hardware can perform
acceleration from it. Furthermore, the only case where
composite with a mask is supported is when the source
is a 1x1 repeating picture (a solid color). The hooks
for this acceleration of compositing are implemented
for Matrox Gx00 cards in the mga driver, the vmware
emulator in the vmware driver, and possibly for SiS
300-series cards in the sis driver.

2.3. OpenGL in XFree86

In XFree86, OpenGL is implemented using the Direct
Rendering Infrastructure (DRI). The DRI consists of
several components: a kernel module specific to the
video card (“Direct Rendering Module” or DRM), a
DRI-aware 2D driver in the DDX, the GLX extension,
the XF86DRI extension to the X protocol (used for
communicating information about the DRM and
hardware setup to the client), and the 3D driver itself,

which is a card-specific shared library opened by the
OpenGL library (libGL) .

The kernel module is used by the X server to set up a
shared memory area that contains information about
the video card. That area includes a lock, which is
used cooperatively by clients and the server to arbitrate
access to the card, along with card-specific state that is
managed by the clients and server. Though clients
could misbehave and abuse the lock, this can at worst
lead to a lockup of the hardware and should not allow a
security compromise. The DRM also often allows
allocation of DMA buffers and submission of sets of
commands by DMA, waiting for hardware interrupts,
and other interactions with the hardware which cannot
be handled or are difficult to handle in userspace.

Because of the availability of source to the DRI drivers
in XFree86, many of the drivers are very similar in
their structure. Most drivers allocate memory for
OpenGL's back and depth buffers statically at server
startup or when the first 3D client is started. Clipping
is used so that all clients can share the back and depth
buffers and only render to the same rectangles in the
back buffer as they would on the visible screen.
Because the design decision to use these static buffers
was made originally, pbuffers (pixel buffers not
associated with the screen) are not implemented,
though they are in demand. The SiS300 driver is
different in that it allocates back and depth buffers per
client from a static block of card memory managed by
the kernel module. However, its design is not a good
model for other drivers because it cannot handle failure
to allocate memory for buffers or textures.

In XFree86, all indirect rendering (OpenGL commands
sent through GLX) is performed in software. Although
the ability to hardware-accelerate indirect rendering is
desired, it has not been implemented yet. The primary
reason is that the interface between the server GLX
code and the current software rendering core
(“ libGLcore”) is very different from that between
libGL and a DRI 3D driver.

2.4. XVideo in XFree86

In XFree86, XVideo is almost always implemented
using the card's overlay scaler. With this method, the
window where the video is to be shown is painted with
a color key. The video image is loaded into offscreen
memory, and the hardware is set up to paint the image
appropriately into the card's video output where the
color key matches. Most, or most likely all, hardware

has only a single overlay scaler, meaning only one
video can be played at once.

One exception is the driver for the Matrox Gx00 series
hardware, which offers textured video as an option
along with the overlay scaler video, though enabling
textured video is exclusive of the DRI and overlay
video. With textured video, the 3D hardware is used to
perform the conversion and scaling of the video, and
supports multiple ports (many videos being displayed
at once).

3. Acceleration in Modern X Servers

In the past, Kdrive has been targeted for X server
development and not for general desktop use. The
changes researched for this paper were oriented
towards making Kdrive an option for a desktop server
by implementing new acceleration and making an
example of acceleration for other servers to follow.
This consisted of creating a better architecture for
Render acceleration, implementing GLX in the server,
improving management of offscreen memory, and
implementing XVideo in a manner more appropriate
for the Composite extension.

3.1. Complications for Render
Acceleration

The Composite operation implemented by Render is
complicated, and it cannot be implemented in hardware
in all cases. Having two source images for an
operation (source and mask) typically requires the use
of the 3D hardware to implement. Most hardware
cannot support 8-bit alpha images (which are very
common) for source or destination when blending
based on alpha values is necessary. Most older
hardware 3D engines cannot handle textures with a
width or height that are not a power of two number of
pixels (NPOT), or are unable to do repeat (wrapping of
texture coordinates outside the boundaries) for NPOT
textures. Unfortunately, NPOT sources are the norm in
2D operations. Also, the alpha component of source,
mask, or destination can be located in a separate buffer
from the color data, which will be difficult to
implement in hardware. Often the width or height of
the source or destination can be larger than the
hardware's limits on texture sizes (2048 pixels being
common in newer hardware, but as low as 256 on older
hardware).

Finally, component alpha will be difficult to accelerate.
Component alpha rendering is used most frequently for

sub-pixel rendering of anti-aliased fonts, taking
advantage of the known order of the red, green, and
blue bands in LCD pixels to provide additional screen
resolution. When component alpha is used, the mask
value is actually a set of four alpha values instead of
one. Each source channel is multiplied by the
corresponding mask channel to produce the final
source color value, and each mask channel is
multiplied by the source alpha to produce the final
source alpha value. Then, each of these source value
and source alpha pairs is blended into the appropriate
destination channel using the specified composite
operation. Although it should be possible to produce
the correct source color values, current hardware can
only do the alpha blending stage using a single source
alpha value and not the componentized source alpha
required. Composite operations that involve the source
alpha value will most likely require using a multiple-
stage process to accelerate, which may be difficult to
implement.

3.2. Implementing Render Acceleration in
Kdrive

There are two tasks for implementing Render
acceleration. One is to accelerate Composite using
existing 2D acceleration hooks whenever possible.
The other is to create new hooks for common
operations that map well to hardware features. This
section covers some of the work on accelerating the
most common operations desired by current
applications.

Originally, KAA only implemented acceleration for
Composite for CopyArea equivalents. This is when the
operation is "Src" and there is no repeat flag set, no
transform of source coordinates, and no mask. The
xcompmgr application uses this operation very
frequently to copy windows to the backbuffer of the
screen, and to copy the backbuffer to the screen. The
acceleration was implemented by using the standard
Copy hook that all drivers had to implement.

The first new Composite acceleration hook
implemented in Kdrive is called "Blend." Blend is a set
of three hooks for a Kdrive driver: PrepareBlend,
Blend, and DoneBlend. This mirrors the three hooks
each for the Copy and Solid operations already
implemented in Kdrive. In the Blend case, there is a
source image but no mask image, and both source and
destination are located in framebuffer memory. This
may be possible to accelerate using only the "front-end
scaler" of a card, originally targeted for video scaling,

or also with the 3D hardware of cards with a single
texture unit. In the PrepareBlend stage, the hardware is
set up for the pictures and composite operation that are
passed in, and failure can be returned to signal that
software fallback is necessary. The Blend call takes
the source and destination coordinates and height and
width of a rectangle to be blended, with no option to
fail. DoneBlend is called after a set of Blends, in case
some teardown is necessary. Blend was first
implemented for ATI Rage 128 (R128) hardware, but
has since been disabled due to problems found using a
Render extension test program.

The second new acceleration for Composite is to check
for cases where the source is a 1x1 repeating picture
and there is no mask, with the "Op" operation being
"Src." This can be accelerated using the solid-fill
driver hook, which is also required for Kdrive drivers.
The source is converted in software into the X server's
Pixel type and passed to the Solid hook. In contrast to
other hardware acceleration, this hook prefers that the
source be in memory rather than the framebuffer,
because if it is located in the framebuffer the
accelerator has to be idled before the value can be
accessed by the CPU for conversion to the destination's
pixel format.

The next new acceleration hook provided is a set of
PrepareComposite/Composite/DoneComposite calls,
where the only thing checked by KAA is that the
source, destination, and the optional mask are located
in framebuffer memory. The driver is responsible for
checking everything else, including handling
transform, repeat, and all the various formats. This is
useful for newer hardware like the Radeon where
almost all commonly-used Composite operations can
be implemented in the 3D hardware. The Composite
acceleration was first implemented for ATI Radeon
100-series hardware, and subsequently for ATI Rage
128 hardware.

Finally, a new UploadToScratch hook was added that
takes two pixmap pointers and makes the second a
copy of the first, but with the data located in a scratch
area in card memory. This allows temporary migration
of a pixmap for the case where a pixmap not being in
offscreen memory is all that is preventing acceleration.
This occurs frequently in drawing of glyphs, which are
not stored in real pixmaps and therefore will not be
migrated into offscreen memory normally. The
previous allocation to the scratch area is invalid
whenever a new UploadToScratch call occurs.

3.3. Offscreen Memory Management

Properly managing offscreen memory is a critical
feature for an X server, and Render operations that read
from the destination are making the problem more
visible. This is because video cards typically have very
slow framebuffer read speeds, making software
fallbacks that result in the CPU reading from card
memory very expensive. A test on the Rage 128
showed a 23% slowdown when writing to framebuffer
compared to system memory, versus a 99% slowdown
when reading from the framebuffer instead of memory,
as seen in Table 1.

read write

R128 system 531MB/sec 247MB/sec

R128 AGP 14.4MB/sec 443MB/sec

R128 FB 5.11MB/sec 192MB/sec

Trident system 228MB/sec 160MB/sec

Trident FB 9.74MB/sec 15.9MB/sec

Table 1: Read and write speed to 512KB blocks of
system, AGP, and framebuffer memory on a 700 Mhz
Pentium 3 with ATI Rage 128 Mobility M4 and a
300Mhz Pentium 2 with Trident Cyber 9525/DVD.

The original Kdrive offscreen memory management
system was very simple. A score is kept that marks
whether a pixmap should be in framebuffer or system
memory. Pixmaps with a size larger than a certain
value (some heuristic) are moved into offscreen
memory when allocated. When a copy operation
occurs, the source pixmap has its score increased if the
destination is in offscreen memory, or decreased if it is
not. When an unaccelerated Composite operation
occurs, the source and mask have their scores
decreased, and when an accelerated Composite
operation occurs their scores are increased. Other
operations performed in software, such as core protocol
text rendering, do not modify the score. If the score
reaches the move in threshold, it is moved into
offscreen memory if possible, replacing other pixmaps
as necessary to do so. The replacement process starts
at the beginning of offscreen memory and continues
until enough space is freed (approximately -- it does
not start moving out pixmaps until it locates a
sufficient stretch without hitting locked offscreen
areas). If the score goes below the move out threshold,
the pixmap is moved back from offscreen memory to
system memory. The scores are clamped to a
minimum and maximum to make the migration more
responsive to changing usage of a pixmap. The score

values can be seen in Table 2, and it is not clear from
CVS logs if the values are tuned or simply based on
estimates.

Score name Value

KAA_PIXMAP_SCORE_MAX 20

KAA_PIXMAP_SCORE_MOVE_IN 10

KAA_PIXMAP_SCORE_INITIAL 0

KAA_PIXMAP_SCORE_MOVE_OUT -10

KAA_PIXMAP_SCORE_MIN -20

Table 2: KAA pixmap migration thresholds.

This initial memory management system worked well
enough for the initial goal of getting hardware
acceleration between pixmaps and to the screen, but it
has limitations. It does not migrate destination
pixmaps that are being software-rendered towards
system memory, which includes some significant core
operations like text rendering and PutImage. It also
has problems with thrashing. As soon as more
pixmaps should be offscreen than there is sufficient
memory for, choosing which pixmaps to keep in
memory becomes an issue. First, when a pixmap is
replaced by another allocation, it will not be moved
back into offscreen memory until its score goes below
the move in threshold and back above it again. If the
move in process is changed to move any pixmap back
in that has a score above the move in threshold,
thrashing occurs when the first pixmaps in offscreen
memory are chosen to be replaced each time. This
state can be seen after anywhere from seconds to a few
minutes of typical desktop usage.

To fix this, several things were changed. The first
improvement was to modify the pixmap migration
score to express whether there is more overall need for
that pixmap to be in framebuffer or system memory,
rather than how often it is used as a source image in a
screen to screen copy to framebuffer versus system
memory. This means that acceleration operations like
Copy and the various solid operations were made to
migrate both source and destination toward
framebuffer. Also, the KdCheck* software fallbacks
that are not called as a result of a failure of one of the
acceleration operations were made to migrate the
destination toward system memory.

The next change was to keep a new score in the
structure for each allocated offscreen area. Unlike the
migration score kept in the pixmap private structure,
this one is meant to represent how important it is for a

particular offscreen area to stay there. This new score
is increased by a constant value whenever a pixmap
gets its migration score increased. Periodically the
scores of each offscreen area are reduced by a fraction
so that the accumulated scores of offscreen areas decay
over time. When a new area is to be allocated, the set
of offscreen areas with the lowest total score is chosen
to be replaced, rather than simply the first set of areas
found. This system is not optimal, because a pixmap
that gets replaced loses all of its accumulated score.
Also, the score is not a very accurate representation of
the value of a particular offscreen area being offscreen.
However, it is sufficient to reduce the thrashing
problem that existed.

The final change was to add a “dirty” flag to the
pixmap private structure. Whenever the pixmap is
modified, the dirty flag is marked, and it is cleared
when the pixmap is moved into or out of offscreen
memory. If the dirty flag is not set when a pixmap is to
be moved out of offscreen memory, the expensive
process of reading the pixmap from the framebuffer is
skipped.

One failed experiment was based on the difference
between the framebuffer and system memory speeds on
the Rage 128. That experiment was to throw out clean
offscreen areas when the migration score is decreased
(when the pixmap is about to be used for software
rendering), along with the usual move out process of
pixmaps whose score goes below the threshold.
However, the process of moving pixmaps in and out
appears to outweigh the advantage of avoiding some
software rendering to the framebuffer.

3.4. Issues With Direct Rendering in
Kdrive

The Composite extension creates several challenges for
implementing the DRI. The existing DRI drivers
which we would like to use are designed only for a
static front/back buffer and a front buffer which is
actually visible onscreen. With the Composite
extension, however, rendering may need to target a
dynamically allocated buffer located in offscreen
memory. Therefore the kernel's knowledge of the
front/back buffer location (if it has any) must be per
graphics context rather than per-device. Also, for a
direct rendering context, the server must be notified in
some way when the client updates its front buffer, so
that damage can be computed.

3.5. Implementation of OpenGL in Kdrive

At the time of this writing, the work to implement
hardware-accelerated OpenGL in Kdrive is incomplete.
The first step was to bring in a software
implementation of GLX. The GLX code was taken
from XFree86 (actually DRI CVS, a separate
repository for OpenGL development in XFree86), and
the server build was modified to use a CVS checkout
of Mesa (rather than including a copy of Mesa source
code in the server tree as in XFree86). At this time, it
is limited to only functioning when Composite is
disabled, but it allows the XFree86 libGL to function.

Next, the server-side component of the DRI was
brought in from XFree86 and the ATI driver was
modified to initialize the DRM and submit its 2D
commands through DMA. All that remains to get
direct rendering in Kdrive on par with XFree86 appears
to be debugging the ATI driver's initialization of the
DRM.

3.6. XVideo

Implementing XVideo with the overlay scaler has
several limitations. One limitation is that there is
usually only one overlay scaler port, so only one video
can be handled at once. It also prevents capturing
screenshots, because the screenshot will include the
color key instead of the scaled, converted video.
Finally, the presence of the Composite Extension
means that blending may occur over the video
window's contents, so that the color key will not match
and a blended color key will appear instead of the
blended video.

The solution is to use the 3D hardware or front-end
scaler to do the conversion and scaling of YUV data
for XVideo. The Rage 128 and Mach64 have front-end
scalers. The ATI Radeon and Rage 128, Matrox Gx00-
series, and 3dfx Voodoo3+ should all support YUV
data as textures (though the 3dfx older than the
Voodoo4 may not be useful due to limitations on
texture sizes). Video using the front-end scaler was
implemented on the Rage 128. However, one problem
with doing video scaling using the texture units is that
there are fewer controls of the output. The overlay
scaler typically has controls for brightness and
saturation, while the Rage 128 front-end scaler and
texture capabilities appear to only have a temperature
(whitepoint) control and no brightness/saturation. Lack
of brightness or saturation control may be possible to

work around by combining the video with a secondary
texture.

4. Results

The Render acceleration is by far the most measurable
acceleration implemented as a result of this work. Even
without support for all the operations necessary, the
Composite acceleration on Radeon 100-series hardware
tripled the speed of non-subpixel antialiased text
rendering, according to x11perf's aa24text test
(2x533Mhz Celeron, Radeon 7500). The Rage 128
Composite implementation showed the largest
improvement, with over a fivefold improvement in
non-subpixel antialiased text rendering, as seen in
Table 3. It also greatly improved the perceived speed
of using xcompmgr, which frequently uses Composite
Over operations with a 1x1 repeating mask picture.

aa24text rgb24text

R128 software 14200/sec 11900/sec

R128 hardware 78500/sec 2550/sec

Table 3: x11perf results for antialiased text (aa24text)
and subpixel-rendered antialiased text (rgb24text) on a
700Mhz Pentium 3 with Rage 128 Mobility M4, before
and after hardware acceleration of Composite.

However, at the same time as non-subpixel text
rendering speed increased, a near fivefold decrease in
subpixel rendering speed was seen. This is because at
least some of the operations necessary, particularly
component alpha blending, are not supported by the
Rage 128 Composite implementation, so the effort that
goes into migrating the pixmaps (including
UploadToScratch) to make them possible to accelerate
is wasted. This suggests more offscreen memory
management work is needed, to avoid that extra effort
when it is not necessary.

5. Future Work

At this point, it needs to be decided if Kdrive is an
appropriate server architecture for use as a desktop
server. In particular, it lacks drivers for most hardware
and lacks the support for control of video modes that
XFree86 offers, though it now offers better 2D
acceleration for Render operations and improved
offscreen memory management. This section will
describe future work to be done on 2D acceleration
based on the new work in the previous section, and the

OpenGL work necessary to make Kdrive usable as a
desktop server.

5.1. Render Acceleration

Even after adding the catch-all Composite hook, hooks
for simpler operations such as Blend remain useful
because they can be tailored to common hardware
features. These hooks free driver authors from having
to figure out the exact set of conditions under which
they can accelerate, and from needing to manually
migrate and pull out the data.

There is at least one more Render acceleration hook
that could be useful. One common operation is to do a
Composite with an ARGB source and a 1x1 repeating
mask to blend opaque images over the destination with
a constant alpha value. This could be done on
hardware with only one texture unit or with a front-end
scaler by putting the constant mask value in the
hardware's primitive color registers instead of using a
secondary texture map. KAA would synchronize the
accelerator if necessary, pull the value from the mask
picture, and pass it, along with the same arguments as
Blend, to a new BlendMask hook.

5.2. Offscreen Memory Management

There are still many things that could be done to
improve offscreen memory management. There are
circumstances where a pixmap should be marked for
migration out of framebuffer which are not being
covered. However, the current system for measuring
whether a pixmap should be in framebuffer is very
crude, being based on the number of software versus
hardware operations, rather than any measurement of
the cost of those operations.

Also, there are serious weaknesses in how migration is
being dealt with for operations that are going to fail
(such as component-alpha compositing, or unsupported
composite operations). Currently, we do not migrate
operations failing in the Setup stage away from the
framebuffer, which is a major speed penalty. If we do
migrate failing operations away, we'll see flip-flopping
of the migration. This is because for repeated
rendering of the same failing operation, the pixmap
will always moved toward the framebuffer until it is
migrated, at which point the Prepare will start failing
and it will start to be moved back toward system
memory. The solution will most likely require adding
a fourth hook that performs all of the checking of the

operation before any migration towards framebuffer
happens and changing the Setup hook to be non-failing.

The excellent write speeds to AGP memory suggest
that it might be a good choice to use for the scratch
area for the UploadToScratch hook instead of
framebuffer when available, if the penalty for the card
to read from AGP instead of local memory is not too
heavy.

If accessing AGP memory from the card does not
include much overhead, it may be valuable to set up
hardware with limited offscreen memory to have a
large piece of AGP memory addressable and use that as
an extension of the card's local memory.

Another area to research would be working on a
method to calculate an optimal working set of pixmaps
to be located in offscreen memory, based on how often
they are dirtied, how often they get read from and
written to, size, and other factors. This could be a
significant improvement over the current system of
simply moving in whatever is necessary for the current
operation. Designing a complete solution to this may
be hard, and benchmarking varying implementations is
difficult due to the lack of a standard general desktop
usage benchmark to be run that would stress offscreen
memory management.

5.3. OpenGL

The next step in developing quality OpenGL support is
to fix the problems with Composite in the GLX
implementation. When that is completed, the major
piece of work is to convert the software GLX
implementation to use asoftware-rendering DRI driver.
This would basically be a wrapper around the same
sort of software GLX implementation, but with a
normal DRI driver interface. Once that is completed, it
should be straightforward to replace the software-
rendering DRI driver with a hardware-rendering DRI
driver, thanks to work that has been done in Mesa CVS
to produce DRI drivers that do not rely on the X
protocol. The drivers should soon be ready for
rendering to buffers other than statically allocated
back/depth buffers because of work being done to
support pbuffers in the DRI and Mesa projects.

5.4. XVideo

Despite being an improvement visually, the current
XVideo acceleration is still a large consumer of CPU

time when playing movies. The CPU usage may be
attributable to the copying of data to the framebuffer,
in which case using AGP memory when available may
help.

Also, most overlay scaler implementations of XVideo
allow control of saturation and brightness, while the
current R128 XVideo does not offer these controls.
More work needs to be done to see if these controls can
be made for the textured video, either using the same
scaler setup as for the overlay scaler, or using texturing
features.

6. Availability

All work described here is available under the
MIT/X11 license, and instructions for getting the code
are available at:

http://www.freedesktop.org/~anholt/freenix2004/

7. Acknowledgments

Many thanks to Keith Packard for his guidance in
understanding the Kdrive architecture and patiently
explaining Render. Thanks also to Anders Carlsson for
help in implementing parts of the KAA and Rage 128
Blend work. Thanks to Keith Packard, Carl Worth,
and Deborah Anholt for many rounds of editing of this
paper. Finally, many thanks to LinuxFund for
sponsoring my work on Kdrive.

 Bibliography

[1] Robert W Scheifler and James Gettys, X Window
System 3d ed., Digital Press. 1992.

[2] Keith Packard, Design and Implementation of the X
Rendering Extension, FREENIX Track, 2001
Usenix Annual Technical Conference.
http://keithp.com/~keithp/talks/usenix2001/xr
ender/, (2001)

[3] Keith Packard, A New Rendering Model for X,
FREENIX Track, 2000 Usenix Annual
Technical Conference. 279-284 (2000)

[4] Keith Packard, The X Rendering Extension, The
XFree86 Project, Inc.

[5] Mason Woo, Jackie Neider, Tom Davis, & Dave
Shriener, OpenGL Programming Guide 3rd
ed., (1999)

[6] Mark Vojkovich and Marc Aurele La France,
XAA.HOWTO, The XFree86 Project, Inc.

